Identifying aquatic plants with drones could be the key to reducing a parasitic infection in people
Posted by admin on 17th January 2020
| 48 views

For the majority of people on Earth, parasites are a fact of life. These organisms live inside the human body, causing debilitating or fatal diseases. Among the parasitic diseases, one of the very worst is schistosomiasis, caused by worms living in the human circulatory system. The disease can cause bleeding, organ damage, and elevated risk of HIV infection and cancer. For children, infection can stunt growth and impair cognitive development.

Everyday chores can carry a risk of parasitic exposure for Senegalese villagers.
Chelsea L. Wood/University of Washington, CC BY-ND

Schistosome worms infect more than 200 million people globally, most of whom live in sub-Saharan Africa. People become infected with this parasite through contact with contaminated freshwater. The worm penetrates their skin as they bathe, perform agricultural work or carry out domestic chores like washing clothes.

There is no vaccine. Since the 1980s, efforts to eliminate schistosomiasis have primarily focused on distributing drugs to infected people. But recently, the World Health Organization formally recognized that this strategy isn’t working in many places, because the treatment provides no protection against future infections. People can rapidly become re-infected when they again come into contact with contaminated water.

Kids in Maka Diama, Senegal.
Chesea L. Wood/University of Washington, CC BY-ND

In addition to drug distribution, WHO emphasizes controlling the snails that incubate the parasitic schistosome worms. The idea is that eliminating the snails could eliminate the disease, since the worms wouldn’t be able to live and replicate in freshwater without them. Although public health officials know eradicating these snails can be a way to manage the schistomosiasis parasite, the challenge is to locate hotspots where the snails flourish.

My lab uses ecology, the scientific study of the abundance and distribution of organisms, to develop solutions for infectious diseases. My colleagues and I work to help public health agencies identify where schistosomiasis hotspots are located. Recently, we made a surprise discovery involving aerial images of aquatic vegetation taken by drones, an approach that may help public health officials gain some real traction in reducing schistosomiasis burdens.

-->